Publications

1      SCIENTIFIC (PEER-REVIEWED) PUBLICATIONS (M0 – M54) – FULL PUBLICATION LIST

No.Publication
[1]Javier Diaz, Marco Pinna, Andrei Zvelindovsky, and Ignacio Pagonabarraga. 2022. Nanoparticle anisotropy induces sphere-to-cylinder phase transition in block copolymer melts. Soft matter 18, 19, 3638–3643. DOI: https://doi.org/10.1039/D2SM00214K.
[2]Javier Diaz, Marco Pinna, Andrei V. Zvelindovsky, and Ignacio Pagonabarraga. 2022. Hybrid Time-Dependent Ginzburg-Landau Simulations of Block Copolymer Nanocomposites: Nanoparticle Anisotropy. Polymers 14, 9. DOI: https://doi.org/10.3390/polym14091910.
[3]Javier Díaz, Marko Soltau, Martin Lísal, Paola Carbone, and Ignacio Pagonabarraga. 2022. Adsorption of amphiphilic grafted polymers as polymer corrosion inhibitors: insights from mesoscopic simulations. Physical chemistry chemical physics : PCCP 24, 19, 11992–12001. DOI: https://doi.org/10.1039/D2CP00504B.
[4]Nikolas Antonatos, Joshua D. Elliott, Vlastimil Mazánek, Petr Marvan, Paola Carbone, Weixiang Geng, Yu Jing, and Zdeněk Sofer. 2022. Dealloying layered PdBi 2 nanoflakes to palladium hydride leads to enhanced electrocatalytic N 2 reduction. J. Mater. Chem. A 7, 3531. DOI: https://doi.org/10.1039/D1TA07395H.
[5]Javier Diaz, Marco Pinna, Andrei V. Zvelindovsky, and Ignacio Pagonabarraga. 2022. Nematic Ordering of Anisotropic Nanoparticles in Block Copolymers. Advcd Theory and Sims 5, 1, 2100433. DOI: https://doi.org/10.1002/adts.202100433.
[6]Marco Ferrari, Jan-Willem Handgraaf, Gianluca Boccardo, Antonio Buffo, Marco Vanni, and Daniele L. Marchisio. 2022. Molecular modeling of the interface of an egg yolk protein-based emulsion. Physics of Fluids 34, 2, 21903. DOI: https://doi.org/10.1063/5.0079883.
[7]Gerhard Goldbeck, Alexandra Simperler, and Gabriele Mogni. 2022. Digital Marketplaces and their value for the Materials Modelling Ecosystem. DOI: https://doi.org/10.5281/zenodo.6329760.
[8]Niclas Lindemann, Sebastian Finger, Hossein A. Karimi‐Varzaneh, and Jorge Lacayo‐Pineda. 2022. Rigidity of plasticizers and their miscibility in silica‐filled polybutadiene rubber by broadband dielectric spectroscopy. J Appl Polym Sci 139, 21, 52215. DOI: https://doi.org/10.1002/app.52215.
[9]Mohd R. B. Shaharudin, Christopher D. Williams, and Paola Carbone. 2022. The role of surface ionisation in the hydration-induced swelling of graphene oxide membranes. Journal of Membrane Science 653, 120489. DOI: https://doi.org/10.1016/j.memsci.2022.120489.
[10]Christopher D. Williams, Zixuan Wei, Mohd R. B. Shaharudin, and Paola Carbone. 2022. A molecular simulation study into the stability of hydrated graphene nanochannels used in nanofluidics devices. Nanoscale 14, 9, 3467–3479. DOI: https://doi.org/10.1039/D1NR08275B.
[11]N. Lauriello, J. Kondracki, A. Buffo, G. Boccardo, M. Bouaifi, M. Lisal, and D. Marchisio. 2021. Simulation of high Schmidt number fluids with dissipative particle dynamics: Parameter identification and robust viscosity evaluation. Physics of Fluids 33, 7, 73106. DOI: https://doi.org/10.1063/5.0055344.
[12]Mara Chiricotto, Fausto Martelli, Giuliana Giunta, and Paola Carbone. 2021. Role of Long-Range Electrostatic Interactions and Local Topology of the Hydrogen Bond Network in the Wettability of Fully and Partially Wetted Single and Multilayer Graphene. J. Phys. Chem. C 125, 11, 6367–6377. DOI: https://doi.org/10.1021/acs.jpcc.0c11455.
[13]Nicodemo Di Pasquale, Joshua D. Elliott, Panagiotis Hadjidoukas, and Paola Carbone. 2021. Dynamically Polarizable Force Fields for Surface Simulations via Multi-output Classification Neural Networks. J. Chem. Theory Comput. 17, 7, 4477–4485. DOI: https://doi.org/10.1021/acs.jctc.1c00360.
[14]           Giuliana Giunta, Mara Chiricotto, Ian Jackson, Hossein A. Karimi-Varzaneh, and Paola Carbone. 2021. Multiscale Modelling of Heterogeneous Fillers in Polymer Composites: the Case of Polyisoprene and Carbon-Black. Journal of physics. Condensed matter: an Institute of Physics journal. DOI: https://doi.org/10.1088/1361-648X/abe44e.
[15]Matthias Heinen, René S. Chatwell, Simon Homes, Gabriela Guevara-Carrion, Robin Fingerhut, Maximilian Kohns, Simon Stephan, Martin T. Horsch, and Jadran Vrabec. 2021. Molecular Modeling and Simulation: Model Development, Thermodynamic Properties, Scaling Behavior and Data Management. In High Performance Computing in Science and Engineering ’20, Wolfgang E. Nagel, Dietmar H. Kröner and Michael M. Resch, Eds. Springer International Publishing, Cham, 541–559. DOI: https://doi.org/10.1007/978-3-030-80602-6_36.
[16]Martin T. Horsch, Silvia Chiacchiera, Michael A. Seaton, Ilian T. Todorov, Björn Schembera, Peter Klein, and Natalia A. Konchakova. 2021. Pragmatic Interoperability and Translation of Industrial Engineering Problems into Modelling and Simulation Solutions. In Data Analytics and Management in Data Intensive Domains, Alexander Sychev, Sergey Makhortov and Bernhard Thalheim, Eds. Communications in Computer and Information Science. Springer International Publishing, Cham, 45–59. DOI: https://doi.org/10.1007/978-3-030-81200-3_4.
[17]Martin T. Horsch, Silvia Chiacchiera, Welchy L. Cavalcanti, and Björn Schembera. 2021. Data Technology in Materials Modelling. Springer International Publishing, Cham. DOI: https://doi.org/10.1007/978-3-030-68597-3.
[18]Martin T. Horsch, Daniele Toti, Silvia Chiacchiera, Michael A. Seaton, Gerhard Goldbeck, and Ilian T. Todorov. 2021. OSMO: Ontology for Simulation, Modelling, and Optimization. DOI: https://doi.org/10.5281/zenodo.5084393.
[19]Martin Láska, Andrew O. Parry, and Alexandr Malijevský. 2021. Breaking Cassie’s law for condensation in a nano-patterned slit. Phys. Rev. Lett. 126, 12, 181. DOI: https://doi.org/10.1103/PhysRevLett.126.125701.
[20]Niclas Lindemann, Jürgen. E. K. Schawe, and Jorge Lacayo‐Pineda. 2021. Kinetics of the glass transition of styrene‐butadiene‐rubber: Dielectric spectroscopy and fast differential scanning calorimetry. J Appl Polym Sci 138, 5, 49769. DOI: https://doi.org/10.1002/app.49769.
[21]Agnese Marcato, Gianluca Boccardo, and Daniele Marchisio. 2021. A computational workflow to study particle transport and filtration in porous media: Coupling CFD and deep learning. Chemical Engineering Journal 417, 1, 128936. DOI: https://doi.org/10.1016/j.cej.2021.128936.
[22]Wolfgang E. Nagel, Dietmar H. Kröner, and Michael M. Resch, Eds. 2021. High Performance Computing in Science and Engineering ’20. Springer International Publishing, Cham. DOI: https://doi.org/10.1007/978-3-030-80602-6.
[23]Panagiotis C. Petris, Paul Becherer, and Johannes G. E. M. Fraaije. 2021. Alkane/Water Partition Coefficient Calculation Based on the Modified AM1 Method and Internal Hydrogen Bonding Sampling Using COSMO-RS. Journal of chemical information and modeling. DOI: https://doi.org/10.1021/acs.jcim.0c01478.
[24]Martin Svoboda, M. G. Jiménez S, Adam Kowalski, Michael Cooke, César Mendoza, and Martin Lísal. 2021. Structural properties of cationic surfactant-fatty alcohol bilayers: insights from dissipative particle dynamics. Soft matter 17, 43, 9967–9984. DOI: https://doi.org/10.1039/D1SM00850A.
[25]M. Chiricotto, G. Giunta, H. A. Karimi-Varzaneh, and P. Carbone. 2020. Calculation of the work of adhesion of polyisoprene on graphite by molecular dynamics simulations. Soft Materials 18, 2-3, 140–149. DOI: https://doi.org/10.1080/1539445X.2019.1701497.
[26]Jan Dočkal, Martin Lísal, and Filip Moučka. 2020. Molecular Force Field Development for Aqueous Electrolytes: 2. Polarizable Models Incorporating Crystalline Chemical Potential and Their Accurate Simulations of Halite, Hydrohalite, Aqueous Solutions of NaCl, and Solubility. Journal of chemical theory and computation 16, 6, 3677–3688. DOI: https://doi.org/10.1021/acs.jctc.0c00161.
[27]Joshua D. Elliott, Alessandro Troisi, and Paola Carbone. 2020. A QM/MD coupling method to model the ion-induced polarization of graphene. J. Chem. Theory Comput. 16, 8, 5253–5263. DOI: https://doi.org/10.1021/acs.jctc.0c00239.
[28]Graziano Frungieri, Gianluca Boccardo, Antonio Buffo, Daniele Marchisio, Hossein A. Karimi‐Varzaneh, and Marco Vanni. 2020. A CFD‐DEM approach to study the breakup of fractal agglomerates in an internal mixer. Can J Chem Eng 98, 9, 1880–1892. DOI: https://doi.org/10.1002/cjce.23773.
[29]P. E. Hadjidoukas, A. Bartezzaghi, F. Scheidegger, R. Istrate, C. Bekas, and A.C.I. Malossi. 2020. torcpy: Supporting task parallelism in Python. SoftwareX 12, 1, 100517. DOI: https://doi.org/10.1016/j.softx.2020.100517.
[30]Martin T. Horsch, Silvia Chiacchiera, Michael A. Seaton, Ilian T. Todorov, Ralf Kunze, Georg Summer, Andreas Fiseni, Barbara Andreon, Andrea Di Scotto Minico, Esteban Bayro Kaiser, Gajanan Kanagalingam, Simon Stephan, Karel Šindelka, Martin Lísal, Javier Díaz Brañas, Ignacio Pagonabarraga, Mara Chiricotto, Joshua D. Elliott, Paola Carbone, Daniele Toti, Gabriele Mogni, Gerhard Goldbeck, Hauke Brüning, Peter Schiffels, and Welchy L. Cavalcanti. 2020. Ontology-based semantic interoperability on the Virtual Materials Marketplace. DOI: https://doi.org/10.5281/zenodo.3986825.
[31]Martin T. Horsch, Silvia Chiacchiera, Michael A. Seaton, Ilian T. Todorov, Karel Šindelka, Martin Lísal, Barbara Andreon, Esteban Bayro Kaiser, Gabriele Mogni, Gerhard Goldbeck, Ralf Kunze, Georg Summer, Andreas Fiseni, Hauke Brüning, Peter Schiffels, and Welchy L. Cavalcanti. 2020. Ontologies for the Virtual Materials Marketplace. Künstl Intell 34, 3, 423–428. DOI: https://doi.org/10.1007/s13218-020-00648-9.
[32]Martin T. Horsch, Christoph Niethammer, Gianluca Boccardo, Paola Carbone, Silvia Chiacchiera, Mara Chiricotto, Joshua D. Elliott, Vladimir Lobaskin, Philipp Neumann, Peter Schiffels, Michael A. Seaton, Ilian T. Todorov, Jadran Vrabec, and Welchy L. Cavalcanti. 2020. Semantic Interoperability and Characterization of Data Provenance in Computational Molecular Engineering. J. Chem. Eng. Data 65, 3, 1313–1329. DOI: https://doi.org/10.1021/acs.jced.9b00739.
[33]Alexandr Malijevský. 2020. Filling, depinning, unbinding: Three adsorption regimes for nanocorrugated substrates. Physical review. E 102, 1-1, 12804. DOI: https://doi.org/10.1103/PhysRevE.102.012804.
[34]Rahul K. Raya, Miroslav Štěpánek, Zuzana Limpouchová, Karel Procházka, Martin Svoboda, Martin Lísal, Ewa Pavlova, Athanasios Skandalis, and Stergios Pispas. 2020. Onion Micelles with an Interpolyelectrolyte Complex Middle Layer: Experimental Motivation and Computer Study. Macromolecules 53, 16, 6780–6795. DOI: https://doi.org/10.1021/acs.macromol.0c00560.
[35]Karel Šindelka and Martin Lísal. 2020. Interplay between surfactant self-assembly and adsorption at hydrophobic surfaces: insights from dissipative particle dynamics. Molecular Physics, e1857863. DOI: https://doi.org/10.1080/00268976.2020.1857863.
[36]Marco Trofa and Gaetano D’Avino. 2020. Sedimentation of Fractal Aggregates in Shear-Thinning Fluids. Applied Sciences 10, 9, 3267. DOI: https://doi.org/10.3390/app10093267.
[37]Marco Trofa and Gaetano D’Avino. 2020. Rheology of a Dilute Suspension of Aggregates in Shear-Thinning Fluids. Micromachines 11, 4. DOI: https://doi.org/10.3390/mi11040443.
[38]Simon Stephan, Martin T. Horsch, Jadran Vrabec, and Hans Hasse. 2019. MolMod – an open access database of force fields for molecular simulations of fluids. Molecular Simulation 45, 10, 806–814. DOI: https://doi.org/10.1080/08927022.2019.1601191.

2      SUBMITTED PUBLICATIONS

No.TitleAuthor
[1]Numerical study on the hydrodynamics of a cone mill for emulsion preparationGuido Lupieri, Ioannis Bagkeris,Jo J.M. Janssen, Adam J. Kowalski
[2]Metadata, workflow, and model exchange for consistent processing of modelling and simulation work flows on multiple simulation hubs (https://publications.hereon.de/id/50029/)Heinz A. Preisig, Peter Klein, Natalia Konchakova, and Martin T. Horsch.
[3]CFD simulation of a high-shear mixer for food emulsion productionGianluca Boccardo, Marco Ferrari, Antonio Buffo, Marco Vanni, Daniele L. Marchisio
[4]Do specific ion effects influence the physical chemistry of aqueous graphene-based supercapacitors? Perspectives from multiscale QMMD simulations https://doi.org/10.48550/arXiv.2203.02469Joshua D. Elliott, Mara Chiricotto, Alessandro Troisi, Paola Carbone
[5]Multiscale scientific workflows on high-performance hybrid cloud Submitted to the IEEE CLOUD 2022 (2022 IEEE International Conference on Cloud Computing)Robert Manson-Sawko, Carlos Pena-Monferrer, Vadim Elisseev, Guido Lupieri, Michael Seaton, Gianluca Boccardo, Jan-Willem Handgraaf, Ilian Todorov, Daniele Marchisio, Adam Kowalski

Subscribe to our monthly newsletter and stay up to date with all news and events.